lation (the continuous line) w1th the results of experiments (we assumed in the calculations that pp = 270
kg/mm?, and pt = 960 kg/mm?). Comparison shows that there is quite satisfactory agreement between the
experunental and theoretical daia.

The author thanks E. 1. Shemyakin and R. 'Kh. Izmagilov for their help in carrying ouf this work.
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MOBILE LOAD ON A LAYER OF IDEALLY
PACKED MATERIAL

I. V. Simonov UDC 539.374

1. Physical Assumptions. A plane load, the shape and value of which does not change with time, moves
with constant velocity U, over the external surface of a layer of material of constant thickness h, lying with-
out friction on a rigid base. We will study the plane stationary motion of the medium when a shockwave U, >
D, exists, where Dy is the wave velocity of the corresponding pressure Py, in a system of coordinate (x, y)
(Fig. 1), connected with the moving load Pj(x) (Py{x) = 0, x >0, Py(0) = Py). Before the wavefront the
medium is unperturbed: P = 0, U= 0, p= py (P is the pressure, U is the mass velocity vector in the fixed
system of coordinates, and p, p; is the current and initial density).

The material satisfies the barotropic equation of state. Its P — § characteristic is shown in Fig. 2 (the
continuous line). The equation of the straight line KM is dP/dp = ¢? = const when P(8y) = Py (6= (p—
Pg)/ py is the volume deformation). This scheme is an idealization of the actual behavior of materials contain~
ing cavities or pores filled with easily compressed material (the dashed line in Fig. 2). The initial nonlinear
part of the loading can sometimes be neglected when the characteristic pressure is higher than the pressure
for which the pores collapse, and a further increment in the deformation occurs due to deformation of the
matrix (for example, when the material is subjected to shock loading of considerable strength). For soft
metals this region is from tens to several hundreds of kilobars. In this case the volume deformations of the
matrix may remain small. For many materials the porosity is not reestablished when the load is removed,
and it is possible to assume that the deformation is linear-elastic when the load is removed. Since the level
of tangential stresses (determined by the relaxed amplitude of the elastic characteristic or limiting flow) is
much less than the pressure of fotal packing, the resistance to shear can be neglected.
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Depending on the relation between U, and ¢ we will have qualitatively different modes of reflection of
an inclined shockwave from a rigid wall. When U, >c¢ regular reflection occurs with a series of alternating
loading and unloading waves reflected from the external surface and the rigid wall. In this case regions of
negative pressure may be formed in the material.

In this paper we will confine ourselves to investigating the mode in which Dy < Uj < c. In this case,
like reflected waves, there will be no surface of discontinuity. Disturbances of a similar type, if they exist
as an initial condition, overtake the leading edge and do not exist in the steady-state mode. Mathematically
this is due to the fact that the equations become elliptic in the perturbed region.

The transient mode Uy =~ ¢ will not be considered. As Uy — ¢ — 0 the reflected wave fronts become
vertical, and their intensity approaches infinity if the calculations are carried out within the framework of
the scheme assumed. To eliminate this singularity it is necessary to take into account the nonlinear proper-
ties of the material and the convective terms in the equations of motion as in the theory of short waves.

The problem of the actual value of the interval (Dy, ¢) is important. For continuous materials and
weak shock waves these quantities are close to one another. Qualitatively, the value of Dy is determined by
the slope of the line OK (Fig. 2), while the velocity of sound is given by the slope of KM, and hence even in
the case of weakly porous materials they may differ considerably in value. For example, for an initial poros-
ity of iron of 0.26 and pressures of ~40-45 kbar on the shockwave front (the porosity becomes practically
zero) D =~ 1.65-1.8 km/sec, while the velocity of sound in the dense iron powder is 4.6 km/sec [1] (there is
unfortunately no data for smaller values of the porosity).

‘

Note that for nonstationary and irregular (Mach) reflection of shockwaves, three shock waves exist
starting from the same point. In the process we are investigating there is only a single shock wave, namely,
a reflected wave which has, as it were, gone outside the limits of the region.

2. Mathematical Formulation. In the X = (X, y) plane we will consider a region 2 bounded by the
straight lines y = 0, h, and an unknown continuous line x = s(y), y = [0, h]. The required functions P(x),
UK) = (U, V), p(X) in the region 2 must satisfy the equations of steady motion and continuity and the de-
fining relation

p(U —UyU = yP Uy = Uy, 0)),
pdivU = (U, — U)yp, dP/dp = ¢* (P(By) = Py,).

The boundary conditions which correspond to the physical conditions on the external surface of the layer,
the rigid wall, and which follow from the laws of conservation on the front, have the form

P = Py(z) (Po(x) = Py <C 00, - ) for § =k,
V=0 for.y =0,
P=p,| U8, U=0U,(1+ )1, ~s),
dPldp = ¢ (P(8y) = Pyy) .for z = s(y).

Here, when deriving the second condition on the front we usedthe kinematic relation D=—U,(VF/| VF %)
(9F/0x), where D is the wave velocity, and F = x ~ s(y) = 0 is the equation of the front in explicit form;
the prime denotes differentiation with respect to y. The unknown function s(y) must satisfy the boundary
conditions which follow from the choice of the system of coordinates and from the consistency of the boundary
conditions

SO)=0, =0, & =/(p8U%Pou—1)* (y=h).
By changing to the dimensionless variables
P=p0Uip, U=60Uu, u={x,v), A=0/0,
(x and s are normalized with respect to h without change in notation) and after making certain transforma~-
tions, the equations and conditions of the problem can be rewritten in the form
(1 — Ogu)u, — Bgvuy = (1 — O)p,, 2.1)
(1 — Sgu)vy — Ogv, = (1 — O)py,
Uy + vy = (6 — )[Ou — Np, + Owpy 1,
dAdp=1—u2 (p(1)=pgy %:=1—Uj/c?) x=Q;
P = pol@) (po(2) > p1, £ > ) for y = 1; 2.2)
v=20 for y=0; 2.3)
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p=u=A(1+5")=ps(y)
b= — Py dAdp = 1 — 3 (p(1) = pyg) Tor 2 = s(y),

§0)=0; s=0, &=} p—1=b (y=1). (2.4)
Here the letter subscript denotes partial differentiation.

We will confine our consideration to the case when 0 « 1 (and the porosity and deformation of the
matrix are small). Neglecting the small terms in Egs. (2.1) we obtain a system of equations of the form
Uy = Pxy Ux = Dy, %Py = —Uy. {2.5)

From the first equation of (2.5) and the first condition of (2.4) we have u(x) = p(x). Eliminating u
from (2.5), we obtain the equation

%*Pyz + Pyy = 0. 2.6}

We will eliminate u, v and A from the boundary conditions. Putting A= 1 + &, the equation of state
can be written in the form

P = Po + Ke (K= (1 —x}7).
Eliminating e from conditions (2.4) we obtain

" Pag
E(1+5s%—1

We will differentiate this relation and the condition v = —s'p, along the front with respect to y
Py+8Pa=Dpn Vy+ V= —("py + 5'p.).

p=ps(y)=

We will add to these the equations from system (2.5), which in the limit also hold on the front, and we
will solve the system obtained for pyg, Py, Vx, and vy. Problem (2.1)-(2.4) then reduces to determining the
function p(x), harmonic in the region 25 (x;, y) = @(®xy, y) (x; = /1), and the function s(y) from the con~
ditions

Py =0 (y=0), p = pyluz) (y = 1); 2.7
8 x(s"pat25'p, ) ®*—s'%) p —s"s"py
_'91—1: - _sz_-?_)' '55 - s'2)+ o (z=s(y) 2.8)

(p.=25's"p,, p,=dpsd(s”) = K (pog— HLE (1 + ) —1]7%);

’ N - r v a(bz+“2) .
sS(0)=0; s=0, s =b, s = =) (y=1). 2.9)
Here a = dpy/dx|x=y, and the condition for s'"(1) follows from the condition of continuity of ap/ax, at
the point x; = 0,y = 1.

Hence, there is a single condition on the known parts of the boundary of the region Q; and two condi~
tions on the unknown parts. Note that if Eq. (2.6) is asymptotically accurate with respect to 6, the conditions
(2.7) and (2.8) are accurate.

3. The Functional Equation of the Problem. We will introduce the complex variable z = x; + iy and the
function &(z) = 9p/dx; — idp/dy, which is analytical in @ = Q; U i, where @ is the region symmetrical to
the region Q; with respect to the x; axis (Fig. 3a); the condition &(z) = &(Zz) is satisfied.

In the curvilinear part of the boundary the real and imaginary parts of the functions #(z) are connected
with the equation of this boundary by the nonlinear differential relations (2.8). When y = +1 its real part
ap/axy = wn( dPo/dX)x=nx1 is specified.
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We will write the necessary and sufficient condition for the complex~valued function of the points of the
boundary to be extended into the depth of the region. One of these conditions is that the Cauchy~type integral
should vanish at any point outside the region [2]. Since the Cauchy-type integral is an analytical function, it
is sufficient for it to vanish off any arc which lies as a whole outside 2, e.g., on a section of the real axis

. D d
I= o (25 —0 <o, (> s0m),

w ) sz,
L

where L= Ly U Ly; Ly = {x <0,y = +1}; I, = {%, = « " !s(y), -1 =y =1}; &}, is the boundary value of &.
We will transform the integrals with respect to L, and I, using the Cauchy—Riemann formula, condi~
tions (2.7), and the properties of symmetry. We finally obtain
Izy sy)l = I + 1,
_ S % o x2dpm/da:+ (0p/33;)”_1d
b, U Gl Vi (3.1)

-0

(s —z ) + %%y
(Xo<< < X, s(0) < Xy, < X)),
Equation (3.1) is the basic functional equation of the problem which serves to determine s(y). After

s(y) is obtained, the field of arbitrary p can be calculated using the Cauchy integral. A similar condition
has been proposed for the approximate solution of linear problems in [3] and has been realized in [4].

The integral I; contains the boundary value of the function Py on Lj. We will further establish a rela~-
tionship between py(x, 1) and s(y). With this aim we will transform the region Q4. The function £ = ¢+ in=
~i sinh (r/2)z transfers @y into the upper half-plane ¢ with a cutout "lune" (the region Q, in Fig. 3b). In this
case the rays z = x; = i are converted into the rays ¢ = ¢ = + cosh (7/2)x;, andthe section{x, =0, -1 < y = 1}
is converted into the section {~1 = ¢ = 1, n = 0}

On the boundary 8%, of the region Q, the following integral relation holds:

o)== | = L=,

BQ,

Hence
Ddi
01, . j"Re =t & > 1). (3.2)

On the right side of (3.2) Py for & >1 and & <—1 does not appear explicitly, so that (3.2) solves the
problem of determining py(x, 1) for specified s(y).

The integral over 9Q; can be divided into parts

oo 1
5 =J1'+sz J1 s"“‘s S
89, —0 -1
We will now integrate in the plane Q. As a result of transformations, connected, in particular, with the
separation of the singularity in the function under the integral and the replacement x = 1 — t'!in J;, we ob-
tain for J; and J, the following final expressions which are convenient for calculations:

Py(xs 1) = Jl _;—_ J:’-f

J1[t(2)] —E(t){\ G‘(—tj)-oi@ dty — Gy (%) ln——}-
dpo

{2y — t) sh [z (2,)/2%] a dp,
~ 4z

A

x=x(ty) &2 (t) — O 0™ dz |x=x(p mE (£)° (3.3)
(t) = ch [nz(t)/2x], z(t) =1 — i,

1 AP 4 —A)P*"‘ (B, —B))g

A=A, + 4, B=B,+B, n0:~shg—;cosgy,
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441 Eosh J2 Y, A.) =

By = — &, ch cos Sy Ba= 3.3)

« &y 9 2 <« ? . a
[Gxel=E =8+, &= C'hi.‘,ﬁln'f_? y.
- nx o,

=chz, g=n(sp, +spi)

4. A Method for the Numerical Solution of the Fundamental Equation of the Problem and the Results of
Calculations. We write the functional

X,

H(s)= {11 (zs; 5)| dzas
X,

defined on the set of functions S, twice continuously differentiable and satisfying the conditions (2.9) at the
ends of the section [0, 1].

H(s) reaches a minimum of zero on the functions —solutions (numerical calculations confirm the
uniqueness of the solution).

We will seek a minivnum of H(s) by the method of trial and error on subsets of the functions §, C 8,
where Sy are sets of cubic spline~-functions [5], and n is the number of divisions of the section [0, 1]. As a
first approximation we will take n = 2 and we will confine ourselves to the case when n = 3 for the numeri~
cal solution of the problem with acceptable accuracy. For each approximation sy = S, the values of I will
be calculated from Egs. (3.1), and the values of py(x, 1) will be calculated from Egs. (3.3), which are obtained
on the assumptlon that s is the true solution. We w111 assume that py (x, 1) calculated in this way converges
to the accurate solution as s, — s (uniformly).

In fact, the computatlonal procedure consists in finding a minimum of a function of n — 1 variables,
which are the instants Mj = Sn(Yl) at intermediate nodes. Calculation on a grid My, M3 (n = 3} with a small
step showed that the surface H(M,, M3) belongs to the "ravine" type, and the direction of the "bottom of the
ravine' coincides approximately with the direction of the straight line M, + M; = const. Correspondingly, we
used a modified method of searching for the minimum of the "ravine' type function in the program [6].

We will now consider the mathematical nature of the problem and the fundamental equation to which it
can be reduced. Problems with wmknown boundaries belong to the class of inverse problems, the usual meth-
ods of solving which often lead to instabilities. The same can also be said of Eq. (3.1), since it is an abstract
Fredholm equation of the first kind. The problem can be reduced to solving an operator equation of the second
kind, but the numerical realization of the solution of (3.1) gives rise to less doubts. Unlike [7], where a simi-
lar method leads to a stable computational algorithm, the conditions in the boundary value probiem presented
here are not of the same type. Calculations show that in certain versions the values of the functional reach a
secondary minimum and the solution does not satisfy the condition of continuity of Py (%, 1) at the point x = 0;
the variation of 6s3 causes a variation in 6py ‘according to Egs. (3.2), which compensates for the effect of 6s;
in the integral I. For regularization purposes a term is added to the functional répresenting the discrepancy
in satisfying the boundary condition for py(x, 1) [8]. Note that for the same reason the equation I = 0 is
written in terms of & (as in [7]), and not in terms of the analytical function p — iv/» (which would be some-
what simpler). We would expect the functional H in this version to be more sensitive to s(y).

The error of the solution can be estimabe%{efrom the quantity 6 = (Hy/ Hy) - 100%, where Hy, is the
value of the minimum of H achieved, and H; = [ |1|dxy, a [X;, X;] is the section of the x axis symmetrical
X5

to the section [Xj, X4] with respect to the point A at which 1= &= 9p/8x,. It was formed here from these
considerations. Since the solution in the region is found using the Cauchy integral it accurately satisfies the
equations inside the region. It follows from the Sokhotskii equation for the limiting values of an integral of the
Cauchy type &~ & = &1, where & is the limiting value of a Cauchy-type integral outside the region Q;,
that the quantity 6y = | 37/ &1,|- 100% represents the discrepancy in satisfying the boundary conditions, since
in the accurate solution ¢~ = 0. The point A can be taken as the most representative, since the solution in
the neighborhood of the foot of the front varies strongly. For practical calculations it is more convenient to
take &, representing the ratio not of the limiting but of the average values of | &| on the right and left of the
front of the front. It is clear intuitively that the values of 6 must be close to 8.

The accuracy achieve is also confirmed by: a) Thebranch of the fumction py(x, 1} reaches a boundary
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Fig. 4

value when x = 0, and b) the values of p reach an asymptotic p — p; when X — —« as a result of integration
of the field over the front in the depth of the region. Calculations show that the accuracy of a) and b) corre-
spond to the estimate 6. The values of 6 attained are =0.5%, and the asymptotic b) is reached with relative
accuracy not exceeding 2.5%.

To interpolate s(y) in the second approximation we used the spline~function ss(y) on a nonuniform
grid. For the majority of versions the length of the intervals were chosen in order to improve the estimate o
" from several percent to ~0.5%. When debugging the program we chose the optimum values of the internal
parameters of the problem (the number of points, the iteration steps, etc.).

Figure 4 shows an example of the numerical calculation of the pressure field (the components of the
vector of the mass velocity w), normalized to py in the physical plane and in the symbolic form of writing.
The number of splittings over the thickness of the layer is 30. A change to the next symbol indicates a change
of p/py by 0.05. The numbers 0, 0,1,1,2,2,... indicate zones of reduced pressure, and the letters A, A,
B, B, C,C, ... indicate the zones of increased pressures, so that the symbol A corresponds to p/py =1
€95 A) *1.05+ gy, B) L.1# €g..., 9=0.95 £ g9, 9 = 0.9 £&p,... 0 =gy (& = 0.025).

The graph of the loads is shown by the asterisks. The first row of the upper symbols also relates to the
load. The pressure on the surface was specified in the form

pola) = poo exp [(—)iHari] (=1, 2).

Hence, we varied four external parameters of the problem: a, the j~characteristics of the pulse length
and shape, b = s'(1) = (U}/D} —1 )1/ 2 = tan g — its intensity or angle of inclination of the front at the point B
(see Fig. 1), and n= (1 ~ UZ/ &)¥2, When choosing b and % we took into account the following facts. First,
Pmax, the maximum pressure attained at the point A, should not be high (otherwise the assumptions made may
break down). We can calculate

Pmax/Poo = (b2 - ®3)/%3,

and we assumed Py,,+/Pyo <5. Secondly, the denominator in the expression for s (1) in (2.9) when %’ = 3p?
vanishes, and when w2 > 3b? the sign of s"(1) becomes unnatural: A falling load corresponds to an increase
in the intensity of the shockwave into the depth of the region. In [8] to explain this situation an investigation
was made on an example of the problem of small stationary perturbations of an inclined shockwave propagat-
ing in half-space. It was established that for »? = 3p’ the solutlon has an integrated singularity at the point
B (an indirect indication of the instability of the solution). When n? < 3K it is everywhere continuous in Q U
L. Physically, the condition w? < 8b* means that the isobars approach from above, n? = 3b% horizontally,
and %% > 3b? from below, to the front of the inclined shock wave. When D < Uy < ¢ there are regions (not of
zero measure) of the parameters, which satisfy the inequality in some sense. It can be seen that small angles
80 = tan 8 = n/V 3) correspond to the inequality »* = 8b%.



TABLE 1"

No, of |No, of . . ©
figure |cwrve % 7 i )

1 0,25 0,30 oo 0,13

2 0,25 0,30 0,25 2 10,2 0,27

3 0,50 0,60 o 0,26

4 0.50 0.30 oo 0.36

3 5 0,50 0,60 0,50 2 0,28 0,56

6 0,50 0,30 0,50 2 0,10 0,45

7 1,00 0,60 %0 0,70

8 1,00 © 0,60 1,00 1 0,22 0,93

9 1,00 0,90 100 | 1 {0391 110

1 0,50 0,60 o 0,26

2 0,25 0,30 ) 0,13

6 3 0,50 0,60 0,50 1 0,53 0,53

4 0,25 0,30 0,50 i 0,20 0,20

5 0,25 0,30 .| 0,25 1 0,29 0,29

Calculations were made for values of b = 1.0, 0.5, and 0.25, and »« = 0.9, 0.6, (b = 1), » = 0.6, 0.3
(b = 0.5), » = 0.3 (b = 0.25). In this case » = 0.9 corresponds to U, ~0.45¢c, »= 0.6 — Uy ~ 0.8¢, n = 0.3 ~
Uy = 0.954c.

We will use the characteristic length of the pulse of value I = —x, (x; is the coordinate where the in-
tensity of the load falls by half). In the calculations we used I = «, 1.5; 1.0; 0.5; 0.25 (j = 1); I = 1.0; 0.5;
0.25 (j = 1) (corresponding to o = 0; 0.31; 0.7; 2.77; 11.4 (j = 2); o = 0.7; 1.39; 2.77 (j = 1)).

The isobars are concentrated around the point A, and for long loading puises (''steps' in particular)
have the shape of arcs of ovals stretched upwards. As the paramefer is reduced the picture, as it were,
contracts along the x axis, although the change in the position of the front is relatively small. The slopes of
the isobars approaching the frontare in complete agreement with the results of the linear theory [8].

In the particles after the transmission of a shock wave and at times in a part of the front of consider-
able thickness additional loading occurs and may be tens of percent of the pressure on the front. The idea of
unloading behind the front was a priori.

For 1~ 1 the isobar picture is complicated by the effect of unloading on the external surface. A region
of reduced pressure appears on the front. The slope of the front changes sign when there is attenuation.

We will represent the attenuation by the quantity e = 1 = ppi,/ Do
(Pmin = min py (y))
0y <1
The effect of attenuation is reduced considerably when the angle 5 is reduced. The same value of e is
obtained when changing from b = 0.5 to b = 0.25 (1, = 0.3) by reducing the pulse length by approximately a

half, This can be explained by the fact that as g3 — 0 the front and the isobars become almost vertical, while
the wave is plane.

The shape of the pulse has less effect on the solution than its length. When [ is halved the value of e
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doubles. Comparing the results for different pulse shapes (j = 1, 2) in the two situations: b = 0.5, = 0.6,
=05 and b=0.25, n=0.3,1 = 0.25, we obtain approximately the same value of the attenuation (about
0.27). For other values of b and w the effect of the shape is greater: e ~0.39 (b=1,j=1,n=0.9), e~
0.18(b=1,j=2,n=0.9).

As the velocity of sound increases (as » increases) the value of e increases considerably. By compar-
ing the solutions for b = 1,7 =1, j = 1 and different », we obtain e = 0.39 (1 = 0.9), e = 0.22 (» = 0.6).
The same correspondence is observed for b = 0.5 and different 1.

Figures 5 and 6 show lines of the fronts and the pressure distribution along the fronts and the rigid wall.
The relationship between the parameters and the numbers on the figures is given in the table, where we also
show values of e and s(0).

Curves 1 and 2 (Fig. 6) for p,(y)/py coincide, which indicates, first, partial similarity (in those cases
the curves of p(x, 0)/pg diverge) in the case of step loading and the same values of pmax/ Poo = (02 + n2)/+E;
and, second, indirectly regarding the accuracy attained: The estimate of the relative difference of p,(y) (with
respect {0 Py ax) in a uniform metric does not exceed 2%. If the pulse is not a ''step," similarity is not ob~
served (compare curves 3 and 4 in Fig, 6).

For short loading pulses (I = 0.25) a short wave is formed in the neighborhood of point A: very high
gradients (9p/ox ~ 10?) for maximum values of the functions themselves. We will analyze the effect of the
neglected terms in system (2.1). Direct calculations using the data from the calculations show that the terms
6gvuy and 0gvvy up to 0y ~ 0.3 remain an order of magnitude less than | vp|. In addition, the coefficients
(1—=9qu)/(1—6) ~1—(1—pglo, in the first two and (I —ug;) in the third of Egs. (2.1) are replaced by
unity. The latter may introduce the greatest error. However, the values of the functions at the point A are
calculated accurately here, while the neighborhood, where u = p may considerably exceed unity, is small, so
that we would expect that consideration of the convective terms when 6 < 0.2 has a small effect on the solu~
tion as a whole unlike [9], where the situation is basically different.
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DYNAMICS OF THE FRACTURE OF
UNIDIRECTIONAL GLASS —PLASTIC

M. V. Stepanenko UDC 539.3+539.4

The dynamic problem of the concentration of stresses and the subsequent propagation of a flaking crack
in unidirectional glass—plasticis considered. A plane deformation is investigated and the glass—plastic ma-
terial corresponds to the model considered in [1], i.e., it is assumed that the armoring of the fiber is in the
uniaxial stressed state (extension—compression}, and the filler (binding) is subjected only to a shear stress.

For practical purposes it is important to explain the features of the kinetics of cracks and the possibil-
ity of localizing them. In this paper we solve these problems by a numerical method, which enables us, with
accepiable accuracy, to describe the nonstationary wave process of stress concentration and subsequent frac-
ture.

The problem of the dynamic concentration of stresses in the region of a defect in a glass—plastic is con~
sidered in a limited number of papers (see, e.g., [2, 3]). Here we use the formulation of the problem given in
[2], where the solution of the dynamic problem is obtained in the form of the sum of a series with a finite
number of terms, each of which corresponds to the contribution of a wave reflected from a certain fiber. In
[3] the problem of approximating the dynamic solution to the static solution with time is discussed. It is not
possible to analyze the kinetics of fracture using analytical methods.

The formulation of the problem is as follows: A fiber is stretched to infinity with & constant force; at
zero instant of time, due to a certain defect, one of the fibers instantaneously fractures; then the broken fiber
begins to be unloaded, while the load on all the others is increased, the perturbations from one rod to another
being transferred by shear waves into the binder; if we assume that the increase in the load on all the fibers
does not lead to their fracture, fracture can only occur in the form of longitudinal flaking cracks,

We will direct the y coordinate along the fiber, and the x coordinate perpendicular to it, and we will
take the origin of coordinates at the defect. We will take as the unit of measurement the quantities which re-
late to the filler: the density p, the shear modulus G, the velocity of shear waves ¢, = ¥ G/p, and the dis-
tance between fibers H(H/c, is the unit of time). We will introduce the following notation: p;, E, and h are
the density, Young's modulus, the thickness of the fiber (c; = v E/p; is the velocity of sound in the fiber),

u (v, t) is the displacement of the j-th fiber (j = 0, 1, +2,...), v(x, y, t) is the displacement of a point of
the filler, g5 = Edu; /oy, T = Gov/9x are the stresses in the fibers and the binder.

The glass—plasticis stretched to infinity with a stress P. We will solve the problem with respect to ad-
ditional perturbations due to breaking of the fiber (suppose this is the fiber j = 0). The equations in the dis-
placements and the boundary conditions have the form (the initial conditions are the zero conditions)

0%/ 0t = 9%/t @)
14 . Eﬂzw; o1
;z P U—yl - T;:"hof’ Qi = Tlemjro — T lamjo; @
v{d, ¥, 1) = wyly, 1); @
dulgt = —P/E (j = 0), u; = 0 (j %= 0) for y = 0, )
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July-August, 1979. Original article submitted May 30, 1978,
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